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We investigate the pairwise mutual information and transfer entropy of ten-channel, free-running 

electroencephalographs measured from thirteen subjects under two behavioral  

conditions: eyes open resting and eyes closed resting. Mutual information measures nonlinear 

correlations; transfer entropy determines the directionality of information transfer. For all  
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10  M. D. Madulara et al. 

channel pairs, mutual information is generally lower with eyes open compared to eyes closed 

indicating that EEG signals at different scalp sites become more dissimilar as the visual  

system is engaged. On the other hand, transfer entropy increases on average by almost two- 

fold when the eyes are opened. The largest one-way transfer entropies are to and from the Oz  

site consistent with the involvement of the occipital lobe in vision. The largest net transfer 

entropies are from F3 and F4 to almost all the other scalp sites. 

Keywords: EEG, vision, mutual information, transfer entropy. 

1.   Introduction 

Human electroencephalographic (EEG) data have been used to assess information 

transfer between different scalp sites for a number of years by employing such measures 

as delayed mutual information1,2, Granger causality3, transfer entropy and a recent 

variant, symbolic transfer entropy4. Relative merits of all but the last are discussed in 

some detail by Cellucci et al.
5. Staniek and Lehnertz4 discuss the merits and advantages 

of symbolic transfer entropy. All of these techniques provide information not only on the 

magnitude of the interaction between brain regions, but more importantly, on the 

direction of information transfer. This ability to detect directionality provides useful 

information that can help elucidate underlying physiological processes. 

 In this contribution, we study the mutual information and the transfer entropy of 

multichannel free-running EEG's of normal human subjects under two behavioral 

conditions: eyes closed resting and eyes open resting. Both measures are calculated using 

a variant of the “adaptive binning” technique introduced by Cellucci et al
5. The results 

show that there are dramatic differences both in the nature of the two measures under 

each of the behavioral conditions, as well as in the changes of their structure as the visual 

system is engaged. 

2.   Mutual Information, Transfer Entropy, and Adaptive Binning 

Given a series of simultaneously measured values of two variables, X = {x1, x2, …, xN} 

and Y = {y1, y2, …, yN}, there are a number of quantities that can be used to measure the 

extent to which the variables are correlated or to determine if there exists a causal 

relationship between them.     

 The Mutual Information, I(X,Y), of X and Y, is the amount of information 

common to X and Y6 and is estimated by 
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Information Transfer on the Onset of Vision  11 

where pX,Y(x,y) is the joint probability distribution of X and Y, and pX(x) and pY(y) are 

their respective marginal probabilities. I(X,Y) is a measure of the amount of information 

about X given a measurement of Y and vice versa. More precisely, it is the average 

number of bits of Y that can be predicted by measuring X, where it can be shown that this 

is symmetrical I(X,Y) = I(Y,X). It is a generalization of measures of cross-correlation such 

as Pearson’s r. In general, it is a more useful measure to the extent that unlike r, it is 

sensitive to nonlinear correlations7,8 

 Correlations, linear or nonlinear, only indicate the extent to which two variables 

are similar. They say nothing about causal relationships. Neither can they indicate if two 

variables are similar not because they interact with each other, but because they are both 

driven by a third. These issues can be addressed by measures of causality or of 

information transfer. One such measure is Schreiber’s transfer entropy9 defined by, 
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where p(x|y) are conditional probabilities. TY->X is a measure of the influence of the 

sequence, Y, on the evolution of X. Unlike mutual information which is symmetric in X 

and Y, transfer entropy in general, is not:  

 Y X X Y
T T

→ →
≠

. 

One is often interested in the net information transfer from Y to X, Tnet = TY->X - TX->Y . 

Hlavácková-Schindlera et al.
10

 showed that transfer entropy is equivalent to the 

conditional mutual information, the mutual information of {x1, x2, …, xN-1} and {x2, x3, 

…,xN} given { y1, y2, …, yN-1}.  

 The distribution, pX(xi) is estimated by subdividing the range, xmax – xmin, into n 

bins. Denoting by Ox(i) the number of x data points in the ith bin, pX(xi) is approximated 

by Ox(i)/N, where N is the total number of (x,y) data pairs. The distribution, pY(yi), is 

obtained similarly. The number of bins in the x and y- axes may, of course be different, 

but we take them here to be the same for the sake of simplicity. If Oxy(i,j) is the number 

of (x,y) data points in the intersection of the ith bin on the x-axis and the jth bin on the y-

axis, then pX,Y(xi,yj) = Oxy(i,j)/N. 

 The choice of the number of bins into which the x- and y- axes are subdivided is 

crucial. If there are too many, one may end up, in the extreme, with occupation numbers 

of 0 or 1 which give no meaningful information. If there are too few, then it may not be 

possible to discern any structure in the distribution at all. Cellucci et al.
5
 resolved this by 

an adaptive partition of the x-y plane. In this procedure, the x and y axes are partitioned 

such that all of the x bins and all of the y bins contain the same number of data points. 

This is accomplished by replacing elements of X and Y by their rank order so that, when 
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12  M. D. Madulara et al. 

there are no ties*, each of the data sets is mapped onto a permutation of the integers, 1, 2, 

…, N. Dividing the transformed data into n bins of equal size guarantees that all the bins 

have the same number of occupants. This partitions the x-y plane into n2
 cells, some of 

which may not be occupied. The number of bins per axis, n, is either estimated prior to 

the calculations of the distributions, or adjusted in the process of the calculation until the 

Cochran condition is satisfied – that is, that at least 80% of the occupied cells contain at 

least five points (see ref. 5). 

3.   Data 

The data were obtained by Watanabe at Hahnemann University in 1999 and 2000 using 

Instep11. Free running, sixteen-channel records were obtained in eyes-open and eyes-

closed conditions. However, because the Electrocap used in the measurements gave poor 

quality data in some channels, only ten channels are used here. 

 The Institutional Review Board of Hahnemann University reviewed all 

procedures involving human subjects. Informed consents were obtained from each 

participant. Multichannel signals were recorded from thirteen healthy adults. Monopolar 

recordings, referenced to linked earlobes, were obtained from 
zF , 

zC , 
zP , 

zO , 
3F ,  

4F , 
3C , 

4C , 
3P , and 

4P . Vertical and horizontal eye movements were recorded, 

respectively, from electrode sites above and below the right eye and from near the outer 

canthi of each eye. Artifact-corrupted records were removed from the analyses. All EEG 

impedances were less than 5 KOhm. Signals were amplified with a gain of 18,000, and 

amplifier frequency cutoff settings of 0.03 Hz and 200 Hz were used. Signals were 

digitized at 1024 Hz using a twelve-bit digitizer. Multichannel records were obtained in 

two conditions: eyes closed, resting and eyes open, resting. Continuous artifact-free 

records were obtained from each subject in the two conditions. The resulting data files 

are at least twelve seconds long. 

 For later convenience, we label the scalp sites listed above by integer indices, 1, 

2, …, 10, respectively. Thus, Fz will be referred to as channel 1, Oz as channel 4, etc. 

Using these integer indices, we label the channel pairs (i , j), i = 1, 2, …, 9; j = i + 1, i + 

2, …, 10 with the consecutive integers 1, 2, …, 45. Thus, the channel pair Fz-Cz is 

channel pair 1, Fz-P4 is channel pair 9, Cz-Pz is channel pair 10, etc., until P3-P4 which 

is channel pair 45. 

4.   Analysis 

If the (x,y) data are more or less uniformly distributed, it is possible to preselect an 

expected average XY cell occupancy and use this to estimate the number of bins into 

which each axis is to be subdivided that would satisfy the Cochran criterion (see ref. 5 for  

 

 
*Ties can be resolved by assigning a higher rank to the entry that occurs earlier in the time series. 
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Information Transfer on the Onset of Vision  13 

details). This, however, is not generally possible for sparse, non-uniformly distributed 

data such as those we study here. This is illustrated by Fig. 1 which shows the fraction of 

cells that contain at least five points (frac5) as a function of the preselected expected 

average occupancy (expect). Here, we use data from the Fz and Cz scalp sites of one 

subject with eyes closed. Fig 1 shows that for this channel pair, one needs an expected 

average occupancy of at least 10 to satisfy the Cochran criterion. 

 

Fig. 1. The fraction of XY cells occupied by at least five points (frac5) vs. the preselected expected average 

occupancy (expect) for data from the Fz and Cz scalp sites of a subject with eyes closed. The dashed line 

represents the Cochran criterion. 

 In a multichannel EEG recording, the amplitude distribution of data from the 

different channels may be sufficiently different that a given value of expect satisfying the 

Cochran criterion for one channel pair would not be satisfactory for another. This is 

illustrated in Fig. 2 which shows the fraction of cells occupied by at least five points 

(frac5) for all channel pairs of a subject with eyes closed when expect = 10. 

Approximately half of the channel pairs satisfy the Cochran criterion, the other half do 

not. In view of this, we steer a more prudent course: start with an arbitrary value of 

expect = 5, say. After the joint distribution has been calculated, determine the fraction of 

cells occupied by at least five points. If the Cochran criterion is satisfied, keep the results 

of the calculation, otherwise increase the value of expect until the criterion is satisfied. 

We do this for the calculation of mutual information as well as transfer entropy. 

However, we require that at least 90% of all occupied cells contain at least 5 points – a 

more stringent criterion than Cochran's. 

5.   Results 

Figure 3 shows the mutual information averaged over all subjects for all 45 channel pairs. 

On the whole, mutual information values for the eyes closed condition are greater than 
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14  M. D. Madulara et al. 

those for eyes open. This is prominently so in those channel pairs involving the frontal 

sites; Fz (channel pairs 1-9), F3 (channel pairs 31-35), and F4 (channel pairs 36-39). 

 

Fig. 2. The fraction of XY cells occupied by at least five points (frac5) for all channel pairs of a subject with 

eyes closed. The preselected expected average occupancy (expect) is 10. The dashed line represents the Cochran 

criterion. 

 

Fig.3. Mutual information for all channel pairs averaged over all subjects. Dashed line – eyes closed, solid line 

= eyes open. 

 Transfer entropy tells a more informative story. Fig.4 shows the one-way 

transfer entropies (Tx->Y and TY->X) for both conditions. The left panel shows eyes closed, 

the right panel eyes open. The results shown are averages over all subjects. Using the 

indexing scheme for channel pairs described in Sec. 3, for a channel pair, (j, k), the solid 

lines connecting dots are transfer entropies from channel j to channel k. The dotted lines 

connecting open circles are transfer entropies going the other way around.  

 The transfer entropies for the eyes open condition are, on average, 1.8 times 

greater than those for the eyes closed. In the eyes open condition, transfer entropies from 

F3 and F4 to and from Oz (channel pairs 25 and 26) are among the highest – not 
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Information Transfer on the Onset of Vision  15 

surprising in view of the involvement of the occipital lobe in vision. Also prominent are 

F4 to C3, C4 and P4 (36, 37 and 39) and F3 to C3 (32). 

 

Fig. 4. One-way transfer entropies averaged over all subjects. Left panel: eyes closed, right panel: eyes open. 

For each channel pair (j, k) (see Sec. 3) the solid lines connecting dots are transfer entropies from channel j to 

channel k; dashed lines connecting open circles are from channel k to channel j. 

 

Fig. 5. Net transfer entropy between all channel pairs averaged over all subjects. Solid lines connecting dots: 

eyes open, dashed lines connecting open circles: eyes closed. 

 Figure 5 shows the net transfer entropy between all channel pairs averaged over 

all subjects. A positive value of the net entropy of the pair, (j, k), means that the net 

entropy transfer is from channel j to channel k. A negative value means that the transfer is 

the other way around.  

S201019451200788X

In
t. 

J.
 M

od
. P

hy
s.

 C
on

f.
 S

er
. 2

01
2.

17
:9

-1
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 5
0.

13
1.

89
.3

1 
on

 1
1/

06
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.worldscientific.com/action/showImage?doi=10.1142/S201019451200788X&iName=master.img-004.jpg&w=283&h=187
http://www.worldscientific.com/action/showImage?doi=10.1142/S201019451200788X&iName=master.img-005.jpg&w=243&h=141
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 In almost all channel pairs, the magnitude of the net transfer entropy with eyes 

open is larger than that with eyes closed. There are even some instances when the 

direction of the net entropy transfer is reversed when the visual system is engaged. 

 The largest net transfer entropies with eyes open are from F3 and F4 to all the 

other channels. In Fig. 5, these are shown by the transfer entropy values of channel pairs 

4, 5, 12, 13, 19, 20, 25 and 26 corresponding to the pairs F2-F3, F2-F4, C2-F3, C2-F4, 

Pz-F3, Pz-F4, Oz-F3 and Oz-F4 all of which have negative net transfer entropies; and 

channel pairs 33 – 39 corresponding to F3-C4, F3-P3, F3-P4, F4-C3, F4-C4, F4-P3, and 

F4-P4 all with positive values.  

6.   Discussion 

For almost all channel pairs (Fig. 3), the mutual information is smaller when the eyes are 

open, suggesting that when the visual system is engaged, the different scalp sites receive 

dissimilar information. As already noted, however, mutual information measures only 

correlations, not information transfer or causality. It is transfer entropy that can indicate 

the direction of information flow.  

 The one-way transfer entropies with eyes open are, on average, almost twice as 

large as those with eyes closed indicating, not surprisingly, that a lot of information is 

being transferred among various brain sites when the eyes are open. The largest one-way 

transfer entropies when the eyes are open are from the occipital site, Oz, to the frontal 

sites F3 and F4 and vice versa, confirming the well-known involvement of the occipital 

lobe in vision. Because both one-way entropy values are large, the net information 

transfer involving Oz is relatively small. The dominant net information transfers are those 

from F3 and F4 which seem to be sending large amounts of information to all the other 

sites. These results are consistent with the longstanding physiological understanding of 

visual processing. Information transfers from the occipital lobe to the frontal lobe, and 

following cognitive processing, information is distributed throughout the central nervous 

system. 

 Potential clinical applications of these analysis procedures warrant 

consideration. The treatment of traumatic brain injury is a particularly promising 

application. Brain injury, even mild traumatic brain injury, can disrupt functional 

connectivity and causal networks12-15. These results indicate that assessment of functional 

and causal networks can quantify post-injury abnormalities in patients who report ill-

defined post-injury deficits (“Doc, I’m not the same.”) when the patient’s 

neuropsychological, imaging, and neurological examinations are unremarkable. 

 Biofeedback is a treatment process in which a physiological signal recorded 

from the patient is converted in real time to a signal (usually auditory or visual) that the 

patient can perceive. By a process that is not understood, the patient learns to alter the 

feedback signal resulting in a change in the physiological variable that controls the 

feedback. The best known and most systematically validated form of biofeedback is the 

operant control of blood pressure. In this application the feedback signal is controlled by 

blood pressure. In neurofeedback electroencephalographic signals control the feedback 
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Information Transfer on the Onset of Vision  17 

signal. Neurofeedback has been used to treat several neuropsychiatric disorders including 

depression16-17, post-traumatic stress disorder18, traumatic brain injury19-21 and chronic 

pain22. In these treatments the feedback signal to the patient is usually constructed from 

the spectral properties of the signal, for example alpha asymmetry. Using the analysis 

procedures developed here it would be possible to construct neurofeedback signals based 

on functional connectivity (mutual information) and/or causal network geometry (transfer 

entropy). This seems to be particularly relevant to the treatment of traumatic brain injury 

since, as outlined above, these injuries can, in some instances, result in a disruption of 

normal function and causal networks. A patient-specific protocol that addresses the 

network damage identified by connectivity/causality analysis may be more successful 

than a treatment based on spectral analysis. 

 It is possible to speculate about the physiological mechanism that may be the 

basis of successful neurotherapy. It is now recognized that neurogenesis (the formation of 

neurons) can occur in the adult mammal, including humans. Several procedures for 

stimulating adult neurogenesis have been identified. But neurogenesis alone is not 

enough. Newly formed neurons must be integrated into the networks that were damaged 

by the injury. We call this critical second step neurointegration. We speculate that 

neurointegration may be facilitated by neurofeedback treatment based on mutual 

information and on transfer entropy. 
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