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Abstract The simplest approach to quantifying animal

behavior begins by identifying a list of discrete behaviors

and observing the animal’s behavior at regular intervals

for a specified period of time. The behavioral distribution

(the fraction of observations corresponding to each

behavior) is then determined. This is an incomplete

characterization of behavior, and in some instances, mild

injury is not reflected by statistically significant changes

in the distribution even though a human observer can

confidently and correctly assert that the animal is not

behaving normally. In these circumstances, an examina-

tion of the sequential structure of the animal’s behavior

may, however, show significant alteration. This contri-

bution describes procedures derived from symbolic

dynamics for quantifying the sequential structure of ani-

mal behavior. Normalization procedures for complexity

estimates are presented, and the limitations of complexity

measures are discussed.
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Statement of the problem

Animal behavior changes as the result of injury. Similarly,

animal behavior changes as the result of the administration

of drugs, particularly drugs of abuse. These are common-

place observations, and as observers of animal behavior we

are often able to discriminate between injured and unin-

jured animals by direct observation with a high degree

of confidence and accuracy. Quantifying the degree of

behavioral distortion, especially in response to mild or

intermediate degrees of injury or drug intoxication, is

surprisingly difficult.

The simplest classical approach to quantifying animal

behavior begins by identifying a list of defined discrete

behaviors. For example, in the case of rats in a free field

observation environment, that list could include sleeping,

eating, drinking, moving, rearing, and grooming. The ani-

mal is observed at regular time intervals, say every 20 s.

The fraction of observations corresponding to each

behavior is calculated. Suppose five behaviors are defined

and labeled A, B, C, D, and E. The distribution of fractions

of observations in each behavior is denoted by

ffA, fB, fC, fD, fEg . In the case of severe head injury, for

example, the fraction of observations recorded as sleep will

often increase. After the administration of amphetamines,

the fraction of observations of moving, rearing, and

grooming may increase.

While this is a beginning of the characterization of

animal behavior, it is often found to be inadequate. In

response to mild injury or low drug dosages, the distribu-

tion of behaviors in experimental animals may be

statistically indistinguishable from the distributions

observed with untreated control animals. Nonetheless, in

some of these cases a human observer can confidently and

correctly assert that the treated animal is not behaving

normally. A possible response to this problem is to

examine the sequential structure of animal behavior by

calculating its complexity.
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Defining and calculating complexity

Consider again the hypothetical example constructed with

five behaviors. Suppose that two behavioral sequences are

observed.

S1 ¼ AAAAAAAAAABBBBBBBBBBCCCCCCCCCC

DDDDDDDDDDEEEEEEEEEE

S2 ¼ BCBADCDAEBCDAAAEAAEEBCCDDEDACCB

EDBDBAEEBEDCCABECDB

An observer would state that the second sequence is

more complex than the first even though the behavior

distributions of both sequences are identical

(fA ¼ fB ¼ fC ¼ fD ¼ fE ¼ :2). Complexity measures

are used to quantify these differences. As the term is used

here, complexity is a measure of structure in a symbol

sequence. There are several mathematical definitions of

complexity. Different definitions emphasize different

aspects of sequence sensitive structure. The choice of def-

inition is informed by its functional utility in discriminating

between experimental groups. It should be noted that dif-

ferent measures of complexity can be highly correlated. For

example, Lempel–Ziv complexity (Lempel and Ziv 1976)

and the context free grammar complexity (Ebeling and

Jiménez-Montaño 1980; Rapp et al. 1991) are highly cor-

related. In test computations, the Pearson linear correlation

coefficient between these measures is r = .998 (Rapp et al.

2001). A review of complexity measures is given in Rapp

and Schmah (1996). A taxonomic classification of com-

plexity measures appears in Rapp and Schmah (2000).

In the examples presented in this contribution, the

Lempel–Ziv complexity is computed. In the taxonomic

structure of Rapp and Schmah, this is a nonprobabilistic,

model-based, randomness-finding measure of complexity.

It gives a high value of complexity for random sequences

and lower values for structured sequences. A presentation

of the definition and pseudo-code for its calculation is

given in Appendix A of Watanabe et al. (2003). This

includes an example calculation that illustrates the algo-

rithmic implementation of the definition. In the case of

sequence S1 given above, the Lempel–Ziv complexity is

6 bits. The complexity of S2 is 22 bits.

Compromised animals can present pathological ster-

eotypic behaviors. A decrease in complexity is expected.

The magnitude of this decrease should be correlated with

the magnitude of the injury or drug dose. This correlation

need not, however, be linear. The possibility of non-

monotonic relationships between behavior, as quantified

by complexity, and the magnitude of the challenge is

suggested by inverted-U relationships between drug dose

and behavior (Braida et al. 1996; Picciotto 2003; Zernig

et al. 2004).

Normalization: How often should behavior be sampled?

How long should behavior be observed?

When estimating the complexity of animal behavior, sev-

eral operational questions must be considered. How often

should behavior be sampled and how long must behavior

be observed? These questions can be probed empirically. In

order to approach this empirical assessment systematically,

the question of normalization must be considered. Lempel–

Ziv complexity and other complexity measures in this

group depend on two things, (i) the dynamics of the process

generating the symbol sequence and (ii) the length of the

symbol sequence. This dual dependence is shown in the

upper panel of the first diagram. Three dynamical systems

are considered, a random number generator, the Hénon

system which is a chaotic dynamical system, and the

periodic van der Pol oscillator. Time series data from these

systems were partitioned uniformly onto a five symbol

alphabet. In this partition, the smallest 20% of the values

were mapped to Symbol A. The next 20% were mapped to

symbol B, and so on. In Fig. 1 it is seen that the Lempel–

Ziv complexity of the random and chaotic dynamical sys-

tems increases with data set size even though the

underlying dynamical process is unchanged. (The Lempel–

Ziv complexity of the periodic van der Pol oscillator also

increases with the length of the symbol sequence. The

increase is much smaller than that observed with the other

two systems and is not discernable at this scale.) This

increase can give a false impression that the intrinsic

complexity is increasing during the observation period.

This problem can be addressed by constructing an appro-

priate normalization. A detailed presentation of

normalization procedures for complexity measurements is

given in Rapp et al. (2005). A summary is given here. A

normalized value of complexity, CNORM, is defined by

CNORM ¼ CORIG=\C0 [ :

CORIG is the complexity of the original symbol sequence.

\C0[ is the mean complexity obtained with random

equiprobable surrogate symbol sequences of the same

length using the same symbol alphabet. An equiprobable

symbol sequence is one in which the probability of each

symbol is equal. In these example calculations there are

five symbols in the alphabet giving a frequency of .2 for

each symbol. Under this normalization a constant signal

will have a complexity approaching zero and a random

signal will have a complexity approaching one. An
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expression for the uncertainty of CNORM (Rapp et al. 2004)

is given by

ðDCNORMÞ2 ¼
1

\C0 [

� �2

DC2
ORIG

þ CORIG

\C0 [ 2

� �2

ðD\C0 [ Þ2

D\C0[ is the standard deviation of the mean \C0[.

DCORIG is the uncertainty of the estimate of CORIG. It is

approximated by

DCORIG ¼
CA � CBj j

ð CAj j þ CBj jÞ=2

where CA is the complexity obtained using the first half of

the original symbol sequence and CB is the complexity

obtained using the second half of the original symbol

sequence. It is seen in Fig. 1 that the normalized com-

plexity is relatively insensitive to data set size.

It should be stressed that the insensitivity of CNORM to

NDATA shown in Fig. 1 requires two things. First, the data

set size, NDATA, must exceed some minimum size; the

value of NDATA required to obtain a stable value of CNORM

depends on the dynamical system under observation and

the quality of the data. In some cases, several thousand

observations can be required. Estimates of CNORM can be

obtained with smaller data sets, but it should be recognized

that these calculations will give only an approximate

estimate of the complexity of the underlying dynamical

process. In many cases, however, an imperfect estimate can

be valuable. The second condition required for the insen-

sitivity of CNORM to NDATA is the dynamical stationarity of

the signal-generating system during the observation period.

If, for example, the system undergoes a transition from

periodic to chaotic behavior CNORM will not be constant,

nor should it be. An example of this is shown in Fig. 2. The

first 5,000 points of the time series were generated by the

periodic van der Pol equation. The second 5,000 points

were random numbers uniformly distributed on [0,1].

CNORM increases as the fraction of the total data set com-

posed by random numbers increases. The uncertainty in the

estimate of CNORM also increases after the introduction of

random elements into the time series. The greatest uncer-

tainty is observed when NDATA = 10,000. The large value

of DCNORM can be understood by referring to the preceding

equation. When NDATA = 10,000, CA is the Lempel–Ziv

complexity calculated using 5,000 points from the van der

Pol system, and CB is the calculated using 5,000 random

numbers. The NDATA = 10,000 case gives the maximum

difference between CA and CB.

With the definition of CNORM in hand, we can now

return to the motivating questions. How often should

behavior be sampled, and how long should behavior be

observed? These questions can be addressed empirically by

finding sampling intervals and observation epochs that give

stable values of CNORM. By normalizing complexity, the
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Fig. 1 Lempel–Ziv complexity and normalized complexity as a

function of data set size. The upper panel shows the Lempel–Ziv

complexity for three systems as a function of data set size. The three

systems are random numbers uniformly distributed on [0,1], data

generated by the chaotic Henon attractor, and data generated by the

periodic van der Pol oscillator. In each case the Lempel–Ziv

complexity increases as a function of data set size. The lower panel

shows the normalized complexity calculated from the Lempel–Ziv

complexity using the procedures outlined in the text. In each case, the

sensitivity to data set size is largely lost while the differences due to

the intrinsic complexity of the generating dynamical process are still

expressed. Error bars for the normalized complexity were computed

using the formula in the text. All complexity calculations were

performed with a five symbol alphabet. Thirty surrogates were used in

each calculation of normalized complexity
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artifactual dependence on data set size is minimized. In the

ideal case it may be possible to find a broad range of con-

ditions in which CNORM is insensitive to both sampling

interval and observation period. Nonetheless, as will be

emphasized in the next section, there are fundamental

limitations to complexity calculations. It is therefore

essential to include a specification of epoch duration and

sampling frequency in any report of normalized complexity.

You only know what you see: a fundamental limitation

of complexity calculations

The calculations of Fig. 2 show that a stable value of

normalized complexity is obtained only if the process

generating the signal is dynamically stable. This point is

also made in the calculations displayed in Fig. 3. The first

value of CNORM in that diagram was computed using 100

random numbers uniformly distributed on [0,1]. Data was

partitioned on a five symbol alphabet. As expected, a value

of CNORM very close to one was obtained (CNORM = .992).

The second point in that curve was produced by a 200 point

data set. The first 100 points were the random numbers

used to calculate the first value of complexity. These 100

points were repeated without change in the same sequence

to produce the second 100 elements of the 200 point data

set. The introduction of a repeated sequence results in a

significantly lower value of normalized complexity

(CNORM = .596). The use of normalized complexity, which

reduces sensitivity to data set size, is essential to this

observation. This process is repeated. The time series is

expanded iteratively by repeating the first 100 points. The

time series become increasingly periodic. The complexity

of a periodic signal, when corrected for length of data set,

is low. A similar analysis using a binary partition has been

published in Rapp et al. (2004).

All complexity measurements carry this uncertainty.

A complex signal may begin to repeat itself. What initially

appears complex may be seen to be simple when the

observation period is increased. The results of Fig. 2 make

the converse point. A seemingly simple signal may be seen

to be complex when observed for a longer period of time.

An absolute value of complexity cannot be obtained

empirically.

First order Markov surrogates: probing the fine

structure of behavior

The simplest probabilistic model of a symbol sequence is a

first order Markov process which can be expressed as a

probability transition matrix. PIJ is the probability that

Symbol I is followed by Symbol J. Does the observed

symbol sequence contain a deeper structure? Stated more

precisely, for a given symbol sequence and a given mea-

sure of complexity, can that measure be used to show that

there is a nonrandom structure in the symbol sequence that

is not contained in the specification of [PIJ]? This question

can be addressed by comparing the complexity obtained

with the original symbol sequence against values obtained

with first order Markov surrogates of equal length.

The method of surrogate data is a powerful statistical

procedure for examining hypotheses about the structure of

dynamical systems (Theiler et al. 1992; Rapp et al. 1993).

An investigation with surrogate data has three components.

First, a dynamical measure M is applied to the original time
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Fig. 2 Normalized complexity as a function of data set size during a

dynamical transition. The data set examined in this diagram consisted

of 5,000 points calculated with the periodic van der Pol system and

5,000 random numbers uniformly distributed on [0,1]. For data set

sizes less than or equal to 5,000 points the complexity corresponds to

that expected from the periodic van der Pol system. For data set sizes

greater than 5,000 points, the fraction of the time series generated by a

random number generator increases and the complexity, even though

normalized, increases. The uncertainty in the estimated normalized

complexity also increases. All complexity calculations were per-

formed with a five symbol alphabet. Thirty surrogates were used in

each calculation of normalized complexity
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series or symbol sequence. The resulting value is denoted

by MORIG. In the examination of sequential animal

behavior, the measure could be the previously described

normalized complexity. In the second step, the original

data set is used to generate surrogate data sets. As will be

explained, the procedure for generating surrogate data

depends on the null hypothesis being examined. The same

dynamical measure is then applied to surrogate data

resulting in the set of values fMS1, MS2,. . .g. In the third

step, MORIG is compared statistically against

fMS1, MS2,. . .g. If MORIG is sufficiently different from

fMS1, MS2,. . .g, the null hypothesis can be rejected.

The procedure used to generate surrogates depends on

the null hypothesis being investigated. If it is hypothesized

that there is no nonrandom sequential structure in the time

series, the surrogates can be generated by random shuffles

of the original data. If the null hypothesis is that, under the

chosen dynamical measure, the time series is indistin-

guishable from linearly filtered random numbers, then

random phase surrogates can be used (Theiler et al. 1992).

When investigating symbol sequences with Markov

surrogates, we address the following question: using the

specified complexity measure is the original symbol

sequence distinguishable from a randomly generated

symbol sequence of the same length that has the same

transition matrix [PIJ]? To implement this procedure [PIJ] is

calculated from the original symbol sequence. A random

number generator is used to generate a collection of sur-

rogate symbol sequences that have the same length and

same [PIJ]. The same complexity measure is applied to the

original symbol sequence to yield MORIG and to each

surrogate sequence to generate fMS1, MS2,. . .g. We then

ask is MORIG significantly different from fMS1, MS2,. . .g?
The simplest statistical procedure to test this separation is a

calculation of the Monte Carlo probability of the null

hypothesis (Rapp et al. 1994). In this case the null

hypothesis is MORIG and fMS1, MS2,. . .g are

indistinguishable.

PNULL ¼
Number of cases where MORIG � MSURROGATE

Total number of cases

The total number of cases is the number of surrogates

plus one. The null hypothesis can be rejected if PNULL is

less than a previously specified rejection criterion. Rejec-

tion of the null hypothesis indicates that there is a structure

in the symbol sequence that cannot be reproduced by the

constrained random process used to generate the

surrogates.

A limitation of this computation should be recognized.

The conclusions are specific to the complexity measure

used. Suppose Lempel–Ziv complexity is used and the null

hypothesis is not rejected. This does not mean that there is

not a structure in the symbol sequence that is not implicit in

[PIJ]. Rather, it can only be said that Lempel–Ziv com-

plexity failed to find evidence for this structure. It remains

possible that the null hypothesis could be rejected if a

different measure was applied to the data and its surro-

gates. Additionally, rejection of the random-[PIJ] null

hypothesis does not identify the additional structure in the

symbol sequence. It does, however, indicate that this

structure exists and is potentially discoverable.

In addition to statistical testing, values of complexity

obtained with Markov surrogates can also be used to nor-

malize complexity measurements obtained with the

original symbol sequence and produce an alternative to the

definition of CNORM defined in the third section.

Generalizations to animal locomotion

In the first section of this paper it was suggested that

symbolic dynamics can be used to explore the sequential

structure of animal behavior by examining a time-ordered

record of discrete behaviors. A complementary measure

can be obtained by quantifying the animal’s movement in a

free field behavior space. If the space is partitioned into a
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Fig. 3 Normalized complexity

of a complex periodic time

series. A 10,000 point time

series was formed by 100

repeats of an identical segment

of 100 random numbers. As the

length of the times series is

increased, the periodic behavior

becomes increasingly evident

and the normalized complexity

decreases. Data were partitioned

on a five symbol alphabet.

Thirty surrogates were used to

calculate the normalized

complexity
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finite number of elements, with each element being

assigned a unique symbol, and if the animal’s position is

recorded at regular intervals, then the previously described

methods can be used to quantify the animal’s trajectory. In

the case of compromised animals where the presentation

includes stereotypic motor behavior, the complexity of the

position sequence would be lower than that observed in

control animals. An investigation of animal movement

following blast exposure is encouraged by a prior literature

showing changes in dynamical measures of movement

following the administration of psychoactive compounds

(Paulus et al. 1990, 1993; Paulus and Geyer 1992, 1993).

Quantitative characterization of animal locomotion does

not need to be limited to measures derived from symbolic

dynamics. A nonlinear analysis of fish movement using the

characteristic fractal dimension, the Richardson dimension,

the Hurst coefficient, and relative dispersion in addition to

Lempel–Ziv complexity has been published by Neumeister

et al. (2004).

Conclusions and recommendations

The focus of this paper has been the analysis of animal

behavior. It should be noted that these methods can be used

in the analysis of behavioral patterns in humans. For

example, Paulus et al. (1996) analyzed data from a binary

choice task by calculating dynamical entropy and local

subsequence entropies. Results obtained with schizo-

phrenic patients were compared against results obtained

with control subjects. Compared to controls, schizophren-

ics ‘‘exhibited significantly less consistency in their

response selection and ordering, characterized by a greater

contribution of both highly preservative and highly

unpredictable subsequences of responses within a test

session.’’

Reports of dynamical analysis of animal behavior in a

free field environment that are based on symbolic dynamics

should include the following:

1. A description of the environment including its size,

contents, and ambient lighting should be given.

2. Since behavior is sensitive to circadian time, the report

should include an indication of the time of day during

the measurement.

3. A specification of the scored behaviors and the scoring

criteria should be given.

4. The sampling interval should be defined.

5. The duration of the observation period should be

reported.

6. The definition of the complexity measure used should

be provided. This report should include a description

of any normalization procedure employed and a

specification of the number of surrogates used to

construct the normalization.
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