Hydroxyl Radicals (OH): Very Dangerous to All Biomolecules

 $\begin{array}{l} H_2O \longrightarrow H_2O^+ & (\text{water radical cation}) + e^-\\ e^- + nH_2O^{---}\underline{fast} & -- \longrightarrow e^-\underline{aq} \ (\text{electron becomes solvated})\\ H_2O^{----} \longrightarrow H_2O^*(\text{excited water}) --- \longrightarrow OH \ (hydroxyl radical) + H^-\text{atom Very short-lived and highly oxidizing}\\ H_2O^+ + H_2O^{---}\underline{fast} --- \longrightarrow H_3O + OH\\ OH + OH^--\underline{slower} \longrightarrow H_2O_2 ---\underline{fast} --- Fe(II) ----- \longrightarrow OH + OH^- \ (\underline{Fenton} \ Chemistry \ (\& Haber-Weiss))\\ OH + H^- ---\underline{fast} ---- \longrightarrow H_2O \ considerable \ re-conversion to water\end{array}$

Superoxide (O_2^{-1}): Substantially less oxidizing and not considered to contribute significantly to oxygen enhancement of radiation damage (Misra & Fridovich, 1976) $e_{aq} + O_2 - ---- Imited by [O_2] - ---- O_2^{-1}$ (superoxide: moderately oxidizing and longer lived) $O_2^{-1} + O_2^{-1} - 2H^+ - -- moderate - -- H_2O_2$ (long-lived) fast----Fe(II) ------ OH diffusable $O_2^{-1} + O_2^{-1} + SOD - 2H^+ - -- faster--- H_2O_2$ fast----Fe(II) ------ OH

Role of Mn^{2+} : Powerful Scavenger of superoxide (O₂⁻⁻) and does not catalyse ⁻OH formation from H₂O₂

Metabolism-Induced ROS are Dangerous

The most important source of ROS *in vivo* in aerobic bacterial cells is the electron transport chain, that can give rise to high levels of O_2^{-1} which is rapidly converted to H_2O_2 by dismutation.

 $O_2^{-} + O_2^{-} - 2H^+ - \frac{\text{moderate}}{\text{moderate}} > //-- + \text{SOD} (faster) - \longrightarrow H_2O_2 (long-lived and diffusable)$ Electron Transport systems leak electrons directly on to O_2 , yielding superoxide Following return-to-growth, electron leaks may be greater

Normal E. coli generates 5 mM O₂⁻ per second in rich medium yielding steady-state 0.1-0.2 mM H₂O₂, & Much higher in minimal medium.

SOD mutants of *E. coli* (sodA⁻B) cannot grow in minimal medium where high levels of metabolic ROS are generated; and recombination deficient (recA⁻) *E. coli sod* mutants are killed in all aerobic growth conditions.

D. radiodurans (*sodA*⁻[*B*⁻]) grows on MM and under chronic radiation

D. radiodurans (sodA [B] recA) is viable under aerobic conditions

Irradiation : Releases Fe(II) from proteins, in the absence of Fe(II) causes H_2O_2 accumulation; protein-, lipid-, and DNA-damage